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1. INTRODUCTION

Let G 1: 1R2 be a simply connected region surrounded by a curve
'G(s) = {xes), yes)} E C,,!(O ~ S ~ 1), 0 < 0: < 1. In G we consider the
first order system,

2r+1 2r+1

L (aiju:/ + biju,,/) + L CijUi + di = 0,
j~1 j=1

i = 1,2,... , 2r + 1, (1.1)

with 2r + 1 unknowns uj in the two independent variables x, y. The coeffi
cients are real with

det(aij) =1= 0 in G.

aij, bij(x, y) E C/(G); Cij, di(x, y) E Ca(G);
(1.2)

The type of (1.1) is determined by the roots of

(1.3)
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and we assume that (1.3) has

2r nonreal solutions: !-til) = Yk(X, y) + iok(x, y),

!-t~2) = Yk(X, y) + iok(x, y),

and one real solution !-t(3) = A(x, y).

k = 1,2,... , r,

From (1.2) we have Yk' Ok' AE Ca?(G). (1.1) is a composite system of 2r
elliptic and one hyperbolic equation, and for r = 1 we get the system of
Vidic [8]. The real characteristics of (1.1) in G are given by the solutions of
the ordinary differential equations

(1.4)

with dyjdx = A(X, y). We shall suppose that these characteristics intersect
the boundary 8G in exactly two points with the exception of two curves,
each of which touches 8G in only one point, either 'G(Sl) or 'G(S2)' Let
8Gl := gG(s) ISl ~ S ~ S2} and let 8G2 be its complement in 8G, Le.,
8G = 8Gl U 8G2 •

According to A. Douglis [3] we can consider the 2r elliptic equations in
the normal form

k

Uk - Vk + aUk-l + bUk_l + " (PtUk-t + qtVk-t) + hk = 0, (1.5)a: y x 11 1...J
l~O

k

Uk. + Vkz + avk- lz + bVk_l• + L (rtYk-l + stVk-D + gk = 0,
1~0

k = 1,2,... , r - 1,

where hk , gk depend on U2r+l and the functions di of (1.1).1 Introducing
complex coordinates z = x + iy, Z = x - iy and

k = 0, 1,..., r - 1,

the vectors ex := «(Xo, (Xl ,... , (Xr_lY, (1.6)

and Y, 8 real functions,

1 Without loss of generality we can assume that the first 2r equations in (1.1) in the
functions ul, ... , u·r are elliptic.
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the system (Ll) can be written in a brief form by using a hypercomplex
algebra ot and hypercomplex functions in ot:

r-l

W = I ekwk'
k~O

er = 0;

however, for purposes of exposition we consider a somewhat simpler form
having the same principal part, namely2

with

Dw + Aw + Bw + Cw + () = 0,

Wll + Re(a . w) + yw + 0 = 0,

Dw:= (:z + q(z) :z) w.

(1.7)

(1.8)

q(z) = L;:~ ekqiz) is a nilpotent function; A, B, C, () E C,,(G) are known
hypercomplex functions; 0:, y, 0 E C,,(G) are known and Wll means the direc
tional derivation of w in the direction ,\ = (,\2 , '\1) E C"I(G) given by (1.4).

2. A SYSTEM OF INTEGRAL EQUATION'S

The first equation of (1.7) is of the form

k = 1, 2, ... , r - 1. (2.1)

Using the general representation theorem from Haack, Wendland [6],
p. 259, Vidic [8], p. 15, we get

wo(z, z) = i It l~(w, w)[G/ + G~I) + ~(w, w)[Gz
1

- G~I)[d', d~]

- faG {uo(dnG
1 - i dG

II
) + ivo dnGIII,

wk(z, z) = iIt l..2'k(w, w)(G/ + G~I) + ..2'k(W, w)(Gz
1

- G~I)[d', d~]

- faG {uidnG
1 - i dGII) + iVk dnGIII k = 1,2,... , r - 1.

I See also, in this regard, Bojarski [2], KUhn [7], Gilbert and Wendland [5], Gilbert and
Hile [4], and Begehr and Gilbert [1].
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Here we are using the notation of Haack-Wendland [6], namely GI,
and Gil are the Green's function and the Neumann's function respectively
for Laplace's equation. The normal derivative condition for GIl is defined as

where a(s) is any continuous function on fJG such that JaG a(s) tis =1= 0
(s is arc length) [see Haack and Wendland [6], p. 113.] The directional
derivative dn is usually defined with respect to the coefficients of a second
order partial differential equation [6] (pp. 24-27). However, for our case
of a complex system (2.1) which is component-wise in Hilbert normal form,
we have

Introducing the hypercomplex functions

r-l

~(w, w) := L ekoPk(w, w)
k=O

(2.2)
r-l

u(z, z) := L ekuk(Z, z),
k=O

we get by summing

r-l

v(z, z) := L ekvk(Z, z)
k=O

w(Z, z) = i fJ~ {~(w, w)(G/ + G~I) + ~(w, W)(G!I - G}I)[d{, d~]

-faG {u(dnG1 - i dGII ) + iv dnGIII. (2.3)

If the contour integral is known, (2.3) is a system of Fredholm integral
equations in which the function w appears as a parameter. With A = (AI' AI) E

C"l(G) given by (1.4) we introduce the Pfaffian forms

(2.4)

then the real characteristics of (1.1) are given by [J = O. Setting

.9;r+I(W, w) := -Re(cr; • w) - yw - 0

in the second equation of (1.7) and integrating we get

i"Z
w(z, z) = w(z', z') + oP2r+I(W, w) Q.

,',12'
.0-0

(2.5)

(2.6)
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Introducing the linear space C* of all continuous hypercomplex functions
G, we define the operators on C* and CeloG), namely

w(z, z) = lfI(w) := i It {w(G.' + G~I) + w(Gz
1

- G~I)}[d" d~],

F(z, z) = "t'(ep) := -"- epa, O(dnG' - i dGII),
JOG

w(z, z) = x(w) := fZ'z wa,~) Q.
z/.i'
n~o

(2.7)

Using this notation for solutions of generalized Cauchy-Riemann equations
and the representation formulas of Haack and Wendland [6] p. 319, (13.1.2),
we have

THEOREM 1. Let the hypercomplex function w(z, z) E C",(G) n C/(G),
and the function w(z, z) E C",(G), w~ E C",(G) be a solution pair of (1.7); then
these functions solve the integral equations

w = lfI(ff(w, w)) + "t'(u) + iCo
(2.8)

w = X(~r+1(w, w)) + w',

where

and

w' = w(z', z'),
1"-1

U = L: ekuk'
k=O

r-l

V = L: ekvk'
k~O

Co = N(v) = f 1 "- va ds
oG a(s) ds JoG

(2.9)

is a constant. Conversely each solution pair (w, w) of(2.8), (2.9) with the above
required differentiability solves the system (1.7).

3. A SPECIAL BOUNDARY VALUE PROBLEM

Let fJG1 be the part of the boundary of G defined in Sect. 1. The system
(1.7) in conjunction with the boundary conditions

u(z, z) = ep(s) E CiO ~ s ~ 1),

w(z, z) = lfI(s) E C",(SI ~ S ~ S2),

Z E G,
(3.1)
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~ 1 d J Va ds = N(v) = Co,
oG a s jaG

is called a special boundary value problem (SBVP).
We have the following

THEOREM 2. If the coefficients of(1.7)

A, B, C, e, ex, y, 0 E C,iG),

(3.2)

(3.3)

and the region G is sufficiently small (this condition is determined by the size
of the coefficients (3.3», then

(a) There always exists a solution pair to the SBVP (1.7), (3.1). The
components of this pair may be represented in the form,

W = WI + KWH' W = WI + KWH' (3.4)

where the hypercomplex function WI , and the function WI are arbitrary solutions
of the nonhomogeneous problem (1.7), (3.1), and WH, WH are arbitrary non
identically vanishing solutions of the homogeneous problem (e = 0 = cP =
'l' = 0); K is a real parameter. Furthermore, the solution pair of the SBVP
is unique if the norm condition is satisfied.

(b) For the solution pair (3.4), WE C,,(G) n C"l(G), and for some {3,
o < (3 < ex, W E Ci at each of the points YG(Sl), YG(S2)' Furthermore W E C"t(G)
along the curves n = 0 in G.

Proof Using Theorem 1 it is sufficient to prove the existence and
uniqueness of the solution for the system of integral equations (2.8). As
in Vidic [8] we consider with fixed Co the iterative scheme

(3.5)

n = 1,2,....

If wn* := wn - wn-t, w n* := w n - w n- 1 and .<lH(-, .) is the homogeneous
part of .P(., ·)(e = 0 in (1.7» we have from (3.5)

Wn* := lp(.PH(Wn-1*, w n - 1*»,

w n* := X(Re(a . wn *) + ywn - 1*).
(3.6)
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r-l h
Introducing the norm Mf := sUP.ec;' 1III1 := sUP.eG Lk=O Ilk I for a yper-
complex function f, it is not difficult to show that for suitable constants
lfG , L G , and M we have the inequalities

and (3.7)

Iw n* I ~ L GM«2r + 1) Mwn* + Mwn- 1*)'

The constants M, lfG' and L G may be chosen as follows: Let f(z) maps G
onto the unit disk and C := max•.{eG II'(z)(z - Wf(z) - fa) I, then

KG := 4C max if. [d', d~] .
7T zeG G I z - , I

The constant M ~ max{1 CXk I, (k = 0,... , r - 1); 1Y I}, and L G is the length
of the longest characteristic [J = °intersecting G.

Letting

we obtain then

and

Mwn' ~ MLG«2r + 1) MKG + 1) Ll n- 1 •

Choosing q, such that °< q < 1, and

q
KG ~ (2r + 1) M ' (3.8)

it can be seen that the sequences {wn }, {wn } converge uniformly to the function
pair (w, w) which solve the SBVP (1.7), (3.1). The remaining parts of the proof
including that concerning the qualitative behavior of w at the points YG(sJ,
YG(S2) may be accomplished following arguments similar to that in Vidic [8].

4. BOUNDARY VALUE PROBLEMS OF POSITIVE INDEX

In connection with the elliptic system (2.1) the boundary condition
u(z, z) loG = ¢>(s) E C~(O ~ S :0;; 1) is a special case of the boundary con
ditions

(4.1)



112 GILBERT AND SCI{NEIDER

Setting Yk := ak + ibk , (4.1) can be written as

r~1

L Re(Ykwk) ek = cp.
k~O

(4.2)

For fixed k, the index of Yk is given by

We consider the following boundary value problem:

(4.4)

(4.5)

(4.6)

Dw + Aw + Bw + Cw + e = 0,

w~ + Re(<< . w) + yw + ~ = 0,

II Re(YkWk) ek I = cp E C~(O ~ S ~ 1),
k~O oG

I Yk I = 1, nk = Ind(Yk) > 0,3 k = 0, 1,... , r - 1.

w IOG
1

= pes) E CiO ~ s ~ 1).

For fixed k each component of the elliptic system (4.4) is associated with an
adjoint equation. Following Haack and Wendland [6] (p. 306), it is clear that
for every solution pair (w, w) such that WE CO(G) n O{G), WE CO(G),
and for each Zk E CO(G) n CI(G), the integral relation

= ft {(WkZkh - (Wk::t'k).}[dz, dz]

= 2i ft Im{wk(zkf - aoftk + bo::t'k)}[dZ, dz]

\ (k-I 8+ 4 ft 1m t k ~o [qk-; a:; + ak_;w; + bk_;w;]

+ CkW + ~k)l [dx, dy], (4.7)

holds for each Jordan domain reG.
Therefore we have

a In the case that for some k : = (k1 ••• k.) the indices nk
1

= nk. = .. = n k• = 0, see
the remark after Theorem 6.
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THEOREM 3. For every solution pair (w, w) of (4.4), w = L;:~ Wtek E

CO(G) n Cl(G), wE CO(G), and every solution Itk E CO(G) n Cl(G),
(k = 0, 1,... , r - 1) of the adjoint system

(4.8)

the integral relation,

(4.9)

k = 0, 1, ... , r - 1.
(4.10)

holds for each Jordan domain reG.

The integral relation (4.9) leads directly to a correspondence between
boundary conditions for the functions Wk and :fI:k . Assume w(z, z) is a solution
of (4.4) with the boundary conditions

Tf Re(Ykwk) ekI = 0,
k=O oG

Then the function Wk satisfies

and with Ih I = 1,

Wk lOG = i~ Pk = iYkPk(s).
Yk

If we write dz laG = ei8(8) ds on the boundary we have

(4.11)

Putting

(4.12)

it follows that

(4.13)
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where Yk(S) and ijk(S) are said to be mutually adjoint boundary conditions.
With these boundary data we have for the adjoint system (4.8) the following

THEOREM 4. ([6] p. 277) The system

with the boundary conditions

(4.8)

(4.14)
k = 0, 1,... , r - 1

has for fixed k 2nk - 1 non trivial, linearly independent continuous solutions
x~), v = 1,2,..., 2nk - 1.

With these solutions for the adjoint equation (4.8) in Theorem 4 we have
for the left side of (4.9)

By construction we know that

Im(Ykxk dz) lOG = Im(Ykxkei8(8») ds = -Im(iiY~kei8(8» ds

= -Im(iijkxk) = -Re(ijkXk) lOG = 0,

and

Re(Y~k dz) = - Re(iiYkxkei8(8») ds = - Re(iijkxk) ds

= +Im(ijkxk) loG ds.

Setting

(v) I (- (v»1Pk = m 'TJ~k oG,

we have

,( Re(wkx~) dz) =,( ¢k(s) p~) ds.
1'OG 1'OG

Therefore, we have from (4.9) the

(4.15)

(4.16)
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THEOREM 5. A necessary conditionfor the existence ofa unique, continuous
solution (w, w) of(4.4)-(4.6) in G is that the integral conditions

v = 1,... ,2nk - 1,k = 0, 1,... , r - 1;

,( ePk(S) p~>Cs) ds
raG

= 2 It 1m l;l:~) C~ [qk-; O~j + ak_jWj + bk_jw;] + CkW + ok)l [dx, dyJ

(4.17)

hold.

In order to prove an existence theorem for the boundary value problem
(4.4)-(4.6) we construct function sequences in the following way (see notation
(2.1)) (see remark 2 after Theorem 6):

8w~+1 n+1 n
~ = 2;,(w , w ),

(4.18)

k = 1,2,... , r - 1;

W n+1 = -X(Re(a . wn+I) + ywn + 0) + w', Wn+l laG = p

n = 0, 1,2,... , WO = 0; (4.19)

where the functions

each fulfill the integral conditions (4.17). In order to show the convergence
of the sequences (4.19) we introduce, as in the proof of Theorem 2, the
functions

(4.20)

From (4.18) we have

k = 1,2,... , r - 1,

wn+I* = -(Re(a . wn+1*) + ywn*),
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To show the convergence of the sequences (4.19) we may again proceed as in
Vidic [8], since the essential "Hilfssatz 5" in [8] p. 37 is also true for hyper
complex functions w when the integral conditions (4.17) hold.

We have then

THEOREM 6. Iffor each n = 0, 1, 2, ... the functions

of the iteration scheme (4.18) fulfills the integral conditions (4.17), then the
boundary value problem (4.4)-(4.6) has a unique solution pair (w, w) in a
sufficiently small region G. Furthermore, WE C,,(G) n C"I(G), wE CiG) and
w E CfJ , °< f3 < (X at each of the points {G(SI) and {G(SI)' Along the curves
n = °we have w E C/o

Remark 1. If for some k := (k1 , ••• , k q), the characteristics nk = ... =
1

nk = °we have the same result as Theorem 6. For this (k1 , ... , k q) we have•
neither integral conditions for the functions Wk ,... , Wk , nor the iteration

. ,,+1 ,,+1 1 •functIOns Wk ,... , Wk .
1 q

Remark 2. Since it is always possible to reduce the boundary value
problem associated with each component Wk to zero providing I 'Yk I = 1
(k = 0, 1,... , r - 1) it is clear that one may solve the "reduced" equations
(4.18) without recourse to checking whether the conditions (4.17) are
satisfied.

5. AN EXAMPLE

In this section we apply the preceding results to the investigation of higher
order, elliptic boundary value problems. In particular, we consider the Riquier
problem

Ll2P + a LIP + hP" + cP" = f,

P laG = ¢o(s) E C"I(8G),

LIP laG = ¢I(S) E C"I(8G).

(5.1)

(5.2)

Here the coefficients a, b, c, fE C,,(G). By setting tP: = LIP, the equation
(5.1) is transformed into the system

LltP + atP + hP" + cP" = f,

LIP - tP = o.
(5.3)
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Setting Vo := If',,,, Uo := If'1/, VI := CP"" Ul := CP1/' and identifying w := cp
yields a system of the type (1.5), namely

Uo.", - VO.1/ = 0

UO•lI + Vo.", = w

Ul,'" - Vl,lI = 0

U1•1I - VI.", = f - aw - bvo - CUo

(5.4)

Upon differentiating with respect to the arc length parameter, the boundary
data may be rewritten as

and

Setting (X := dyjds, and f3 := dyjds on oG these conditions take on the form

(XUo+ f3vo lao = cPo(s) E C,,(oG),

(XU1 + f3v1 lOG = cPl(S) E CioG).

The initial condition for the w-unknown is

(5.6)

Putting the system (5.4) into complex form yields a system of the type (2.1),

where

and

i
Co = 2'

a1 = ~ (b + ic), b1 = - ~ (b - ic),
i

C1 = 2 a,
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on 8G,

In the complex notation the boundary conditions for Wk become Re(Ykwk) = 0
(k = 0, I), where Yk := ex + if3. Since

_ 'Q dy . dx . '"( )
Yk = ex - I/-' = -- - 1- = -Ie'" 8

ds ds

it is clear that ind(Yk) = I.
The adjoint boundary value problem is then given by the system,

(k = 0, I), (5.8)

with boundary conditions,

(k = 0, I). (5.9)

A simple computation shows that ?]k = -1, and hence, ind(?]k) =
-'Y]k + 1 = 0 (k = 0, 1). By Theorem (4), for each k we have then exactly
one nontrivial, continuous solution, namely ftk - iK (k = 0, 1), where K

is a real constant.
We next investigate the integral conditions (4.17). For k = 0, the condition

to be satisfied is

,{ epo(s) Po(s) ds = -K,{ <Po(s) ds = 2 If Im{fto(cow + 00) dx dy
jaG jaG G

= 2 It 1m liK (- ~ w)l [dx, dy] = O.

That the left-hand side also vanishes is seen quite easily by recalling the
periodicity of ;Po(s), namely

-K,{ <Po(s) ds = -K r ;P~(s) ds = -K[;P~(t) - ;Po(O)] = O.
jaG JaG

We check next the integral conditions for k = 1. The right-hand side of
(4.17) is seen to be

2 It Im{x1(a1wO + b1wO + c1w + 0l)} dx dy

= 2 It 1m liK (~ [bvo + cuo] + i; W - ~ f)1 dx dy = O.

Whereas the left-hand side is evaluated similarly as before to be
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Hence, since the integral conditions of Theorem (5) are valid there exists
a unique, continuous solution of the system (5.4), (5.5), (5.6), and therefore
also of the Riquier problem (5.1), (5.2).
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