On a Class of Boundary Value Problems for a Composite System of First Order Differential Equations

R. P. Gilbert*
University of Delaware, Newark, Delaware 19711

AND
M. SCHNEIDER

Technical University Berlin, Berlin, Germany
Communicated by Oved Shisha
Received August 11, 1977

1. Introduction

Let $G \Sigma \mathbb{R}^{2}$ be a simply connected region surrounded by a curve $\zeta_{G}(s)=\{x(s), y(s)\} \in C_{\alpha}{ }^{1}(0 \leqslant s \leqslant 1), 0<\alpha<1$. In G we consider the first order system,

$$
\begin{equation*}
\sum_{j=1}^{2 r+1}\left(a_{i j} u_{x}^{j}+b_{i j} u_{y}^{j}\right)+\sum_{j=1}^{2 r+1} c_{i j} u^{j}+d_{i}=0, \quad i=1,2, \ldots, 2 r+1 \tag{1.1}
\end{equation*}
$$

with $2 r+1$ unknowns u^{j} in the two independent variables x, y. The coefficients are real with

$$
\begin{gather*}
a_{i j}, b_{i j}(x, y) \in C_{\alpha}^{1}(\bar{G}) ; \quad c_{i j}, d_{i}(x, y) \in C_{\alpha}(\bar{G}) \\
\operatorname{det}\left(a_{i j}\right) \neq 0 \text { in } G . \tag{1.2}
\end{gather*}
$$

The type of (1.1) is determined by the roots of

$$
\begin{equation*}
\operatorname{det}\left(\mu a_{i j}-b_{i j}\right)=0 \tag{1.3}
\end{equation*}
$$

[^0]and we assume that (1.3) has
$2 r$ nonreal solutions: $\mu_{k}^{(1)}=\gamma_{k}(x, y)+i \delta_{k}(x, y)$,
$$
\mu_{k}^{(2)}=\gamma_{k}(x, y)+i \delta_{k}(x, y), \quad k=1,2, \ldots, r,
$$
and one real solution $\mu^{(3)}=\lambda(x, y)$.
From (1.2) we have $\gamma_{k}, \delta_{k}, \lambda \in C_{\alpha} \mathbf{1}(\bar{G})$. (1.1) is a composite system of $2 r$ elliptic and one hyperbolic equation, and for $r=1$ we get the system of Vidic [8]. The real characteristics of (1.1) in \bar{G} are given by the solutions of the ordinary differential equations
\[

$$
\begin{equation*}
\frac{d x}{d s}=\lambda_{1}(x, y), \quad \frac{d y}{d s}=\lambda_{2}(x, y), \quad \lambda_{1}^{2}+\lambda_{2}^{2}=1 \tag{1.4}
\end{equation*}
$$

\]

with $d y / d x=\lambda(x, y)$. We shall suppose that these characteristics intersect the boundary ∂G in exactly two points with the exception of two curves, each of which touches ∂G in only one point, either $\zeta_{G}\left(s_{1}\right)$ or $\zeta_{G}\left(s_{2}\right)$. Let $\partial G_{1}:=\left\{\zeta_{G}(s) \mid s_{1} \leqslant s \leqslant s_{2}\right\}$ and let ∂G_{2} be its complement in ∂G, i.e., $\partial G=\partial G_{1} \cup \partial G_{2}$.

According to A. Douglis [3] we can consider the $2 r$ elliptic equations in the normal form

$$
\begin{gather*}
u_{0_{x}}-v_{0_{y}}+p_{0} u_{0}+q_{0} v_{0}+h_{0}=0, \\
u_{0_{y}}+v_{0_{x}}+r_{0} u_{0}+s_{0} v_{0}+g_{0}=0, \\
u_{k_{x}}-v_{k_{y}}+a u_{k-\mathbf{1}_{x}}+b u_{k-\mathbf{1}_{y}}+\sum_{l=\mathbf{0}}^{k}\left(p_{l} u_{k-l}+q_{l} v_{k-l}\right)+h_{k}=0, \tag{1.5}\\
u_{k_{y}}+v_{k_{x}}+a v_{k-\mathbf{1}_{x}}+b v_{k-1_{y}}+\sum_{l=0}^{k}\left(r_{l} y_{k-l}+s_{l} v_{k-l}\right)+g_{k}=0, \\
k=1,2, \ldots, r-1,
\end{gather*}
$$

where h_{k}, g_{k} depend on $u^{2 r+1}$ and the functions d_{i} of (1.1). ${ }^{1}$ Introducing complex coordinates $z=x+i y, \bar{z}=x-i y$ and

$$
\begin{align*}
w_{k} & :=u_{k}+i v_{k}, \quad k=0,1, \ldots, r-1 \\
\omega & :=u^{2 r+1}: \quad \text { the vectors } \alpha:=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{r-1}\right)^{T} \tag{1.6}\\
\mathbf{w} & :=\left(w_{0}, w_{1}, \ldots, w_{r-1}\right)^{T} ; \quad \text { and } \gamma, \delta \text { real functions, }
\end{align*}
$$

[^1]the system (1.1) can be written in a brief form by using a hypercomplex algebra $O l$ and hypercomplex functions in O :
$$
w=\sum_{k=0}^{r-1} e^{k} w_{k}, \quad e^{r}=0
$$
however, for purposes of exposition we consider a somewhat simpler form having the same principal part, namely ${ }^{2}$
\[

$$
\begin{array}{r}
D w+A w+B \bar{w}+C \omega+\theta=0, \\
\omega_{\lambda}+\operatorname{Re}(\alpha \cdot w)+\gamma \omega+\delta=0, \tag{1.7}
\end{array}
$$
\]

with

$$
\begin{equation*}
D w:=\left(\frac{\partial}{\partial \bar{z}}+q(z) \frac{\partial}{\partial z}\right) w . \tag{1.8}
\end{equation*}
$$

$q(z)=\sum_{k=1}^{r-1} e^{k} q_{k}(z)$ is a nilpotent function; $A, B, C, \theta \in C_{a}(\bar{G})$ are known hypercomplex functions; $\alpha, \gamma, \delta \in C_{\alpha}(\bar{G})$ are known and ω_{λ} means the directional derivation of ω in the direction $\lambda=\left(\lambda_{2}, \lambda_{1}\right) \in C_{\alpha}{ }^{1}(\bar{G})$ given by (1.4).

2. A System of Integral Equations

The first equation of (1.7) is of the form

$$
\begin{align*}
& \frac{\partial w_{0}}{\partial \bar{z}}=-a_{0} w_{0}-b_{0} \bar{w}_{0}-c_{0} \omega-\delta_{0}=: \mathscr{L}_{0}(w, \omega) \\
& \frac{\partial w_{k}}{\partial \bar{z}}=-\sum_{j=0}^{k-1} q_{k-j} \frac{\partial w_{j}}{\partial z}-\sum_{j=0}^{k}\left(a_{k-j} w_{j}+b_{k-j} \bar{w}_{j}\right)-c_{k} \omega-\delta_{k}=: \mathscr{L}_{k}(w, \omega) \\
& k=1,2, \ldots, r-1 . \tag{2.1}
\end{align*}
$$

Using the general representation theorem from Haack, Wendland [6], p. 259, Vidic [8], p. 15, we get

$$
\begin{aligned}
w_{0}(z, \bar{z})= & i \iint_{G}\left\{\mathscr{L}_{0}(w, \omega)\left[G_{z}{ }^{\mathrm{I}}+G_{z}^{\mathrm{II}}\right)+\overline{\mathscr{L}_{0}(w, \omega)}\left[G_{\bar{z}}{ }^{\mathrm{I}}-G_{\bar{z}}^{\mathrm{I}}\right)[d \zeta, d \bar{\zeta}]\right. \\
& -\oint_{\partial G}\left\{u_{0}\left(d_{n} G^{\mathrm{I}}-i d G^{\mathrm{II}}\right)+i v_{0} d_{n} G^{\mathrm{I}}\right\}, \\
w_{k}(z, \bar{z})= & i \iint_{G}\left\{\mathscr{\mathscr { L }}_{k}(w, \omega)\left(G_{z}{ }^{\mathrm{I}}+G_{z}^{\mathrm{II}}\right)+\overline{\mathscr{L}_{k}(w, \omega)}\left(G_{\bar{z}}{ }^{\mathrm{I}}-G_{\bar{z}}^{\mathrm{II}}\right)[d \zeta, d \bar{\zeta}]\right. \\
& -\oint_{\partial G}\left\{u_{k}\left(d_{n} G^{\mathrm{I}}-i d G^{\mathrm{II}}\right)+\dot{i}_{k} d_{n} G^{\mathrm{II}}\right\} \quad k=1,2, \ldots, r-1 .
\end{aligned}
$$

[^2]Here we are using the notation of Haack-Wendland [6], namely $G^{\text {r }}$, and $G^{I I}$ are the Green's function and the Neumann's function respectively for Laplace's equation. The normal derivative condition for $G^{I I}$ is defined as

$$
\left.d_{n} G^{\mathrm{II}}\right|_{\partial G}=-\Sigma^{-1} \sigma(s) d s
$$

where $\sigma(s)$ is any continuous function on ∂G such that $\int_{\partial G} \sigma(s) d s \neq 0$ (s is arc length) [see Haack and Wendland [6], p. 113.] The directional derivative d_{n} is usually defined with respect to the coefficients of a second order partial differential equation [6] (pp. 24-27). However, for our case of a complex system (2.1) which is component-wise in Hilbert normal form, we have

$$
d_{n} \Phi:=-i \Phi_{z} d z+i \Phi_{\bar{z}} d \bar{z}
$$

Introducing the hypercomplex functions

$$
\begin{gather*}
\hat{\mathscr{L}}(w, \omega):=\sum_{k=0}^{r-1} e^{k} \mathscr{L}_{k}(w, \omega) \\
u(z, \bar{z}):=\sum_{k=0}^{r-1} e^{k} u_{k}(z, \bar{z}), \quad v(z, \bar{z}):=\sum_{k=0}^{r-1} e^{k} v_{k}(z, \bar{z}) \tag{2.2}
\end{gather*}
$$

we get by summing

$$
\begin{align*}
w(z, \bar{z})= & i \iint_{G}\left\{\hat{\mathscr{L}}(w, \omega)\left(G_{z}^{\mathrm{I}}+G_{z}^{\mathrm{II}}\right)+\overline{\mathscr{L}(w, \omega)}\left(G_{z}{ }^{\mathrm{I}}-G_{\bar{z}}^{\mathrm{II}}\right)[d \zeta, d \bar{\zeta}]\right. \\
& -\oint_{\partial G}\left\{u\left(d_{n} G^{\mathrm{I}}-i d G^{\mathrm{II}}\right)+i v d_{n} G^{\mathrm{II}}\right\} \tag{2.3}
\end{align*}
$$

If the contour integral is known, (2.3) is a system of Fredholm integral equations in which the function ω appears as a parameter. With $\lambda=\left(\lambda_{1}, \lambda_{1}\right) \in$ $C_{\alpha}{ }^{1}(\bar{G})$ given by (1.4) we introduce the Pfaffian forms

$$
\begin{equation*}
\Omega=\lambda_{1} d x+\lambda_{2} d y, \quad \bar{\Omega}=\lambda_{1} d y-\lambda_{2} d x \tag{2.4}
\end{equation*}
$$

then the real characteristics of (1.1) are given by $\bar{\Omega}=0$. Setting

$$
\begin{equation*}
\mathscr{L}_{2 r+1}(w, \omega):=-\operatorname{Re}(\alpha \cdot w)-\gamma \omega-\delta \tag{2.5}
\end{equation*}
$$

in the second equation of (1.7) and integrating we get

$$
\begin{equation*}
\omega(z, \bar{z})=\omega\left(z^{\prime}, \bar{z}^{\prime}\right)+\int_{\substack{z^{\prime}, z^{\prime} \\ \bar{s}=0}}^{z, \bar{z}} \mathscr{L}_{2 r+1}(w, \omega) \Omega . \tag{2.6}
\end{equation*}
$$

Introducing the linear space C^{*} of all continuous hypercomplex functions \bar{G}, we define the operators on C^{*} and $C_{\alpha}(\partial G)$, namely

$$
\begin{align*}
& \tilde{w}(z, \bar{z})=\Psi(w):=i \iint_{G}\left\{w\left(G_{z}^{\mathrm{I}}+G_{z}^{\mathrm{II}}\right)+\bar{w}\left(G_{\bar{z}}^{\mathbf{1}}-G_{\bar{z}}^{\mathrm{II}}\right)\right\}[d \zeta, d \bar{\zeta}] \\
& F(z, \bar{z})=\mathscr{C}(\phi):=-\oint_{\partial G} \phi(\zeta, \bar{\zeta})\left(d_{n} G^{\mathbf{I}}-i d G^{\mathrm{II}}\right) \tag{2.7}\\
& \hat{w}(z, \bar{z})=\chi(w):=\int_{\substack{z^{\prime}, \bar{z}^{\prime} \\
\Omega_{0}}}^{z, \bar{z}} w(\zeta, \bar{\zeta}) \Omega .
\end{align*}
$$

Using this notation for solutions of generalized Cauchy-Riemann equations and the representation formulas of Haack and Wendland [6] p. 319, (13.1.2), we have

Theorem 1. Let the hypercomplex function $w(z, \bar{z}) \in C_{\alpha}(\bar{G}) \cap C_{\alpha}{ }^{1}(G)$, and the function $\omega(z, \bar{z}) \in C_{\alpha}(G), \omega_{\lambda} \in C_{\alpha}(G)$ be a solution pair of (1.7); then these functions solve the integral equations

$$
\begin{align*}
w & =\Psi(\hat{\mathscr{L}}(w, \omega))+\mathscr{C}(u)+i C_{0} \\
\omega & =\chi\left(\mathscr{L}_{2 r+1}(w, \omega)\right)+\omega^{\prime}, \tag{2.8}
\end{align*}
$$

where

$$
\omega^{\prime}=\omega\left(z^{\prime}, \bar{z}^{\prime}\right), \quad u=\sum_{k=0}^{r-1} e^{k} u_{k}, \quad v=\sum_{k=0}^{r-1} e^{k} v_{k},
$$

and

$$
\begin{equation*}
C_{0}=N(v)=\frac{1}{\oint_{\partial G} \sigma(s) d s} \oint_{\partial G} v \sigma d s \tag{2.9}
\end{equation*}
$$

is a constant. Conversely each solution pair (w, ω) of (2.8), (2.9) with the above required differentiability solves the system (1.7).

3. A Special Boundary Value Problem

Let ∂G_{1} be the part of the boundary of G defined in Sect. 1. The system (1.7) in conjunction with the boundary conditions

$$
\begin{array}{ll}
u(z, \bar{z})=\phi(s) \in C_{\alpha}(0 \leqslant s \leqslant 1), & z \in \dot{G}, \\
\omega(z, \bar{z})=\Psi(s) \in C_{\alpha}\left(s_{1} \leqslant s \leqslant s_{2}\right), & z \in \dot{G}_{1}, \tag{3.1}
\end{array}
$$

and the norm condition

$$
\begin{equation*}
\frac{1}{\oint_{\partial G} \sigma d s} \oint_{\partial G} v \sigma d s=N(v)=C_{0}, \tag{3.2}
\end{equation*}
$$

is called a special boundary value problem (SBVP).
We have the following
Theorem 2. If the coefficients of (1.7)

$$
\begin{equation*}
A, B, C, \Theta, \alpha, \gamma, \delta \in C_{\alpha}(\bar{G}) \tag{3.3}
\end{equation*}
$$

and the region G is sufficiently small (this condition is determined by the size of the coefficients (3.3)), then
(a) There always exists a solution pair to the SBVP (1.7), (3.1). The components of this pair may be represented in the form,

$$
\begin{equation*}
w=w_{I}+\kappa w_{H}, \quad \omega=\omega_{I}+\kappa \omega_{H} \tag{3.4}
\end{equation*}
$$

where the hypercomplex function w_{I}, and the function ω_{I} are arbitrary solutions of the nonhomogeneous problem (1.7), (3.1), and w_{H}, ω_{H} are arbitrary non identically vanishing solutions of the homogeneous problem $(\Theta=\delta=\phi=$ $\Psi=0) ; \kappa$ is a real parameter. Furthermore, the solution pair of the SBVP is unique if the norm condition is satisfied.
(b) For the solution pair (3.4),w $w C_{\alpha}(\bar{G}) \cap C_{\alpha}^{1}(G)$, and for some β, $0<\beta<\alpha, \omega \in C_{i}$ at each of the points $\gamma_{G}\left(s_{1}\right), \gamma_{G}\left(s_{2}\right)$. Furthermore $\omega \in C_{\alpha}{ }^{1}(G)$ along the curves $\bar{\Omega}=0$ in G.

Proof. Using Theorem 1 it is sufficient to prove the existence and uniqueness of the solution for the system of integral equations (2.8). As in Vidić [8] we consider with fixed C_{0} the iterative scheme

$$
\begin{gather*}
w^{n}:=\Psi\left(\hat{\mathscr{L}}\left(w^{n-1}, \omega^{n-1}\right)\right)+\mathscr{C}(\phi)+i C_{0} \\
\omega^{n}:=\chi\left(\mathscr{L}_{2 r+1}\left(w^{n}, \omega^{n-1}\right)\right)+\omega^{\prime} \tag{3.5}\\
w^{0}=\omega^{0}=0, \quad n=1,2, \ldots
\end{gather*}
$$

If $w^{n^{*}}:=w^{n}-w^{n-1}, \omega^{n^{*}}:=\omega^{n}-\omega^{n-1}$ and $\overline{\mathscr{L}}_{H}(\cdot, \cdot)$ is the homogeneous part of $\hat{\mathscr{L}}(\cdot, \cdot)(\Theta=0$ in (1.7)) we have from (3.5)

$$
\begin{align*}
& w^{n^{*}}:=\Psi\left(\hat{\mathscr{L}}_{H}\left(w^{n-1^{*}}, \omega^{n-1^{*}}\right)\right), \\
& \omega^{n^{*}}:=\chi\left(\operatorname{Re}\left(\alpha \cdot \mathbf{w}^{n^{*}}\right)+\gamma \omega^{n-1^{*}}\right) . \tag{3.6}
\end{align*}
$$

Introducing the norm $M_{f}:=\sup _{z \in \bar{G}}\|f\|:=\sup _{z \in \bar{G}} \sum_{k=0}^{r-1}\left|f_{k}\right|$ for a hypercomplex function f, it is not difficult to show that for suitable constants ψ_{G}, L_{G}, and M we have the inequalities

$$
\begin{equation*}
\left\|w^{n^{*}}\right\| \leqslant K_{G} M\left((2 r+1) M_{w^{n-1}}+M_{\omega^{n-1}}\right), \tag{3.7}
\end{equation*}
$$

and

$$
\left|\omega^{n^{*}}\right| \leqslant L_{G} M\left((2 r+1) M_{w n^{*}}+M_{\omega^{n-1}}\right) .
$$

The constants M, ψ_{G}, and L_{G} may be chosen as follows: Let $f(z)$ maps G onto the unit disk and $C:=\max _{z, \zeta \epsilon \epsilon}\left|f^{\prime}(z)(z-\zeta) / f(z)-f(\zeta)\right|$, then

$$
K_{G}:=\frac{4 C}{\pi} \max _{z \in G} \iint_{G} \frac{[d \zeta, d \bar{\zeta}]}{|z-\bar{\zeta}|} .
$$

The constant $M \geqslant \max \left\{\left|\alpha_{k}\right|,(k=0, \ldots, r-1) ;|\gamma|\right\}$, and L_{G} is the length of the longest characteristic $\bar{\Omega}=0$ intersecting G.

Letting

$$
\Delta_{n}:=\left\{\max M_{w^{n^{*}}}, M_{\omega^{n}}\right\},
$$

we obtain then

$$
M_{w^{n *}} \leqslant(2 r+1) M K_{G} \Delta_{n-1},
$$

and

$$
M_{\omega^{n^{*}}} \leqslant M L_{G}\left((2 r+1) M K_{G}+1\right) \Delta_{n-1} .
$$

Choosing q, such that $0<q<1$, and

$$
\begin{equation*}
K_{G} \leqslant \frac{q}{(2 r+1) M}, \quad L_{G} \leqslant \frac{q}{2 M}, \tag{3.8}
\end{equation*}
$$

it can be seen that the sequences $\left\{w_{n}\right\},\left\{\omega_{n}\right\}$ converge uniformly to the function pair ($\tilde{w}, \tilde{\omega})$ which solve the $\operatorname{SBVP}(1.7),(3.1)$. The remaining parts of the proof including that concerning the qualitative behavior of ω at the points $\gamma_{G}\left(s_{1}\right)$, $\gamma_{G}\left(s_{2}\right)$ may be accomplished following arguments similar to that in Vidić [8].

4. Boundary Value Problems of Positive Index

In connection with the elliptic system (2.1) the boundary condition $\left.u(z, \bar{z})\right|_{\partial G}=\phi(s) \in C_{\alpha}(0 \leqslant s \leqslant 1)$ is a special case of the boundary conditions

$$
\begin{equation*}
\left.\sum_{k=0}^{r-1}\left(a_{k} u_{k}+b_{k} v_{k}\right) e^{k}\right|_{\partial G}=\left.\sum_{k=0}^{r-1} \phi_{k} e^{k^{k}}\right|_{\partial G}:=\phi \tag{4.1}
\end{equation*}
$$

Setting $\gamma_{k}:=a_{k}+i b_{k}$, (4.1) can be written as

$$
\begin{equation*}
\sum_{k=0}^{r=1} \operatorname{Re}\left(\bar{\gamma}_{k} w_{k}\right) e^{k}=\phi \tag{4.2}
\end{equation*}
$$

For fixed k, the index of γ_{k} is given by

$$
\begin{equation*}
n_{k}=\operatorname{Ind}\left(\bar{\gamma}_{k}\right):=\frac{1}{2 \pi}\left\{\arg \bar{\gamma}_{k}(1)-\arg \bar{\gamma}_{k}(0)\right\} . \tag{4.3}
\end{equation*}
$$

We consider the following boundary value problem:

$$
\begin{gather*}
D w+A w+B \bar{w}+C \omega+\Theta=0, \tag{4.4}\\
\omega_{\lambda}+\operatorname{Re}(\alpha \cdot \mathbf{w})+\gamma \omega+\delta=0, \tag{4.5}\\
\left.\sum_{k=0}^{r-1} \operatorname{Re}\left(\bar{\gamma}_{k} w_{k}\right) e^{k}\right|_{\partial G}=\phi \in C_{\alpha}(0 \leqslant s \leqslant 1), \\
\left|\bar{\gamma}_{k}\right|=1, \quad n_{k}=\operatorname{Ind}\left(\bar{\gamma}_{k}\right)>0,^{3} \quad k=0,1, \ldots, r-1 . \tag{4.6}\\
\left.\omega\right|_{\partial G_{1}}=\Psi(s) \in C_{\alpha}(0 \leqslant s \leqslant 1) .
\end{gather*}
$$

For fixed k each component of the elliptic system (4.4) is associated with an adjoint equation. Following Haack and Wendland [6] (p. 306), it is clear that for every solution pair (w, ω) such that $w \in C^{0}(\bar{G}) \cap C^{1}(G), \omega \in C^{0}(\bar{G})$, and for each $z_{k} \in C^{0}(\bar{G}) \cap C^{1}(G)$, the integral relation

$$
\begin{align*}
\oint_{\partial \Gamma} w_{k} z_{k} d z+\bar{w}_{k^{z}} d \bar{z}= & 2 \oint_{\partial \Gamma} \operatorname{Re}\left\{w_{k} z_{k} d z\right\} \\
= & \iint_{\Gamma}\left\{\left(w_{k} z_{k}\right)_{\bar{z}}-\left(\bar{w}_{k} \bar{z}_{k}\right)_{z}\right\}[d \bar{z}, d z] \\
= & 2 i \iint_{\Gamma} \operatorname{Im}\left\{w_{k}\left(x_{k \bar{z}}-a_{0} z_{k}+b_{0} \bar{z}_{k}\right)\right\}[d \bar{z}, d z] \\
& +4 \iint_{\Gamma} \operatorname{Im}\left\{z _ { k } \left(\sum_{j=0}^{k-1}\left[q_{k-j} \frac{\partial w_{j}}{\partial z}+a_{k-j} w_{j}+b_{k-j} \bar{w}_{j}\right]\right.\right. \\
& \left.\left.+c_{k} \omega+\delta_{k}\right)\right\}[d x, d y], \tag{4.7}
\end{align*}
$$

holds for each Jordan domain $\Gamma \subset G$.
Therefore we have

[^3]Theorem 3. For every solution pair (w, ω) of (4.4), $w=\sum_{k=0}^{r-1} w_{k} e^{k} \in$ $C^{0}(\bar{G}) \cap C^{1}(G), \quad \omega \in C^{0}(\bar{G}), \quad$ and every solution $z_{k} \in C^{0}(\bar{G}) \cap C^{1}(G)$, ($k=0,1, \ldots, r-1$) of the adjoint system

$$
\begin{equation*}
\frac{\partial z_{k}}{\partial \bar{z}}=a_{0} \tilde{z}_{k}-b_{0} \bar{z}_{k} \tag{4.8}
\end{equation*}
$$

the integral relation,

$$
\begin{align*}
\oint_{\partial \Gamma} \operatorname{Re}\left\{w_{k^{z} k} d z\right\}= & 2 \iint_{\Gamma} \operatorname{Im}\left\{z _ { k } \left(\sum_{j=0}^{k-1}\left[q_{k-j} \frac{\partial w_{j}}{\partial z}+a_{k-j} w_{j}+b_{k-j} \bar{w}_{j}\right]\right.\right. \\
& \left.\left.+c_{k} \omega+\delta_{k}\right)\right\}[d x, d y] \tag{4.9}
\end{align*}
$$

holds for each Jordan domain $\Gamma \subset G$.
The integral relation (4.9) leads directly to a correspondence between boundary conditions for the functions w_{k} and z_{k}. Assume $w(z, \bar{z})$ is a solution of (4.4) with the boundary conditions

$$
\begin{equation*}
\left.\sum_{k=0}^{r-1} \operatorname{Re}\left(\bar{\gamma}_{k} w_{k}\right) e^{k}\right|_{\partial G}=0, \quad \operatorname{Ind}\left(\bar{\gamma}_{k}\right)=n_{k}>0, \quad k=0,1, \ldots, r-1 . \tag{4.10}
\end{equation*}
$$

Then the function w_{k} satisfies

$$
\left.\operatorname{Im}\left(\bar{\gamma}_{k} w_{k}\right)\right|_{\partial G}=\rho_{k}(s) \neq 0,
$$

and with $\left|\bar{\gamma}_{k}\right|=1$,

$$
w_{k} l_{\partial G}=i \frac{1}{\bar{\gamma}_{k}} \rho_{k}=i \gamma_{k} \rho_{k}(s) .
$$

If we write $\left.d z\right|_{\hat{\theta} G}=e^{i \theta(s)} d s$ on the boundary we have

$$
\begin{align*}
\oint_{\partial G} \operatorname{Re}\left(w_{k} z_{k} d z\right) & =\oint_{\partial G} \operatorname{Re}\left(i \gamma_{k} \rho_{k^{\imath}} e^{i \theta(s)}\right) d s \tag{4.11}\\
& =\oint_{\partial G} \rho_{k}(s) \operatorname{Re}\left(i \gamma_{k} z_{k} e^{i \theta(s)}\right) d s
\end{align*}
$$

Putting

$$
\begin{equation*}
\bar{\eta}_{k}=i \gamma_{k} e^{i \theta(s)} \tag{4.12}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\operatorname{Ind}\left(\bar{\eta}_{k}\right)=\operatorname{Ind}\left(i_{\gamma_{k}} e^{i \theta(s)}\right)=-n_{k}+1 \leqslant 0 \tag{4.13}
\end{equation*}
$$

where $\bar{\gamma}_{k}(s)$ and $\bar{\eta}_{k}(s)$ are said to be mutually adjoint boundary conditions. With these boundary data we have for the adjoint system (4.8) the following

Theorem 4. ([6] p. 277) The system

$$
\begin{equation*}
\frac{\partial z_{k}}{\partial \bar{z}}=a_{0} z_{k}-\bar{b}_{0} \bar{z}_{k} \tag{4.8}
\end{equation*}
$$

with the boundary conditions

$$
\begin{gather*}
\left.\operatorname{Re}\left(\bar{\eta}_{k^{*}} k\right)\right|_{\partial G}=0, \quad \bar{\eta}_{k}=i \gamma_{k} e^{i \theta(s)}, \tag{4.14}\\
\operatorname{Ind}\left(\bar{\eta}_{k}\right)=-n_{k}+1 \leqslant 0, \quad k=0,1, \ldots, r-1
\end{gather*}
$$

has for fixed $k 2 n_{k}-1$ non trivial, linearly independent continuous solutions $z_{k}^{(\nu)}, \nu=1,2, \ldots, 2 n_{k}-1$.

With these solutions for the adjoint equation (4.8) in Theorem 4 we have for the left side of (4.9)

$$
\begin{aligned}
\oint_{\partial G} \operatorname{Re}\left(w_{k^{z_{k}}} d z\right) & =\oint_{\partial G} \operatorname{Re}\left(w_{k} \bar{\gamma}_{k} \gamma_{k^{z_{k}}} d z\right) \\
& =\oint_{\partial G}\left\{\operatorname{Re}\left(\bar{\gamma}_{k} w_{k}\right) \operatorname{Re}\left(\gamma_{k^{z_{k}}} d z\right)-\operatorname{Im}\left(\bar{\gamma}_{k} w_{k}\right) \operatorname{Im}\left(\gamma_{k} z_{k} d z\right)\right\}
\end{aligned}
$$

By construction we know that

$$
\begin{aligned}
\left.\operatorname{Im}\left(\gamma_{k} z_{k} d z\right)\right|_{\partial G} & =\operatorname{Im}\left(\gamma_{k^{z_{k}}} e^{i \theta(s)}\right) d s=-\operatorname{Im}\left(i i \gamma_{k^{z_{k}}} e^{i \theta(s)}\right) d s \\
& =-\operatorname{Im}\left(i \bar{\eta}_{k^{z}}\right)=-\left.\operatorname{Re}\left(\bar{\eta}_{k^{z_{k}}}\right)\right|_{\partial G}=0,
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Re}\left(\gamma_{k^{z_{k}}} d z\right) & =-\operatorname{Re}\left(i i \gamma_{k^{z} k} e^{i \theta(s)}\right) d s=-\operatorname{Re}\left(i \bar{\eta}_{k^{\imath_{k}}}\right) d s \\
& =+\left.\operatorname{Im}\left(\bar{\eta}_{k^{\imath}}{ }^{\prime}\right)\right|_{\partial G} d s .
\end{aligned}
$$

Setting

$$
\begin{equation*}
\rho_{k}^{(\nu)}=\left.\operatorname{Im}\left(\bar{\eta}_{k^{z}}{ }_{k}^{(\nu)}\right)\right|_{\partial G}, \tag{4.15}
\end{equation*}
$$

we have

$$
\begin{equation*}
\oint_{\partial G} \operatorname{Re}\left(w_{k^{z}} z_{k}^{(\nu)} d z\right)=\oint_{\partial G} \phi k(s) \rho_{k}^{(\nu)} d s . \tag{4.16}
\end{equation*}
$$

Therefore, we have from (4.9) the

Theorem 5. A necessary condition for the existence of a unique, continuous solution (w, ω) of (4.4)-(4.6) in G is that the integral conditions

$$
\begin{align*}
& \oint_{\partial G} \phi_{k}(s) \rho_{k}^{(v)}(s) d s \\
& =2 \iint_{G} \operatorname{Im}\left\{\psi_{k}^{(v)}\left(\sum_{j=0}^{k-1}\left[q_{k-j} \frac{\partial w_{j}}{\partial \bar{z}}+a_{k-j} w_{j}+b_{k-j} \bar{w}_{j}\right]+c_{k} \omega+\delta_{k}\right)\right\}[d x, d y] \\
& k=0,1, \ldots, r-1 ; \quad v=1, \ldots, 2 n_{k}-1, \tag{4.17}
\end{align*}
$$

hold.
In order to prove an existence theorem for the boundary value problem (4.4)-(4.6) we construct function sequences in the following way (see notation (2.1)) (see remark 2 after Theorem 6):

$$
\begin{gather*}
\frac{\partial w_{0}^{n+1}}{\partial \bar{z}}=\mathscr{L}_{0}\left(w^{n+1}, \omega^{n}\right),\left.\quad \operatorname{Re}\left(\bar{\gamma}_{0} w_{0}^{n+1}\right)\right|_{\partial G}=\phi_{0} \tag{4.18}\\
\frac{\partial w_{k}^{n+1}}{\partial \bar{z}}=\mathscr{L}_{k}\left(w^{n+1}, \omega^{n}\right),\left.\quad \operatorname{Re}\left(\bar{\gamma}_{k} w_{k}^{n+1}\right)\right|_{\partial G}=\phi_{k} \\
k=1,2, \ldots, r-1 \\
\omega^{n+1}=-\chi\left(\operatorname{Re}\left(\alpha \cdot \mathbf{w}^{n+1}\right)+\gamma \omega^{n}+\delta\right)+\omega^{\prime},\left.\omega^{n+1}\right|_{\partial G}=\Psi \\
n=0,1,2, \ldots, \quad \omega^{0}=0 \tag{4.19}
\end{gather*}
$$

where the functions

$$
w_{0}^{n+1}, w_{1}^{n+1}, \ldots, w_{r-1}^{n+1}, \omega^{n}, \quad n=0,1, \ldots
$$

each fulfill the integral conditions (4.17). In order to show the convergence of the sequences (4.19) we introduce, as in the proof of Theorem 2, the functions

$$
\begin{equation*}
w_{k}^{n^{*}}=w_{k}^{n}-w_{k}^{n-1}, \quad \omega^{n^{*}}=\omega^{n}-\omega^{n-1} . \tag{4.20}
\end{equation*}
$$

From (4.18) we have

$$
\begin{align*}
\frac{\partial w_{0}^{n+1^{*}}}{\partial \bar{z}}= & -a_{0} w_{0}^{n+1^{*}}-b_{0}{\overline{w_{0}}}_{0}^{n+1^{*}}-c_{0} \omega^{n^{*}} ;\left.\quad \operatorname{Re}\left(\bar{\gamma}_{0} w_{0}^{n+1^{*}}\right)\right|_{\partial G}=0, \\
\frac{\partial w_{k}^{n+1^{*}}}{\partial \bar{z}}= & -a_{0} w_{k}^{n+1^{*}}-b_{0} \bar{w}_{k}^{n+1^{*}} \\
& -\sum_{j=0}^{k-1}\left\{q_{k-j} \frac{\partial w_{j}^{n+1^{*}}}{\partial z}+a_{k-j} w_{j}^{n+1^{*}}+b_{\left.k-\bar{w}_{j} \bar{w}_{j}^{n+1^{*}}\right\}-c_{k} \omega^{n^{*}}},\right. \tag{4.21}\\
& k=1,2, \ldots, r-1,\left.\quad \operatorname{Re}\left(\bar{\gamma}_{k} w_{k}^{n+1^{*}}\right)\right|_{\partial G}=0 ; \\
& \omega^{n+1^{*}}=-\left(\operatorname{Re}\left(\alpha \cdot \mathbf{w}^{n+1 *}\right)+\gamma \omega^{n *}\right), \quad \omega^{1^{*}}=\omega^{1} .
\end{align*}
$$

To show the convergence of the sequences (4.19) we may again proceed as in Vidić [8], since the essential "Hilfssatz 5 " in [8] p. 37 is also true for hypercomplex functions w when the integral conditions (4.17) hold.

We have then

Theorem 6. If for each $n=0,1,2, \ldots$ the functions

$$
w_{0}^{n+1}, w_{1}^{n+1}, \ldots, w_{r-1}^{n+1}, \omega^{n}, \quad n=0,1,2, \ldots
$$

of the iteration scheme (4.18) fulfils the integral conditions (4.17), then the boundary value problem (4.4)-(4.6) has a unique solution pair (w, ω) in a sufficiently small region G. Furthermore, $w \in C_{\alpha}(\bar{G}) \cap C_{\alpha}{ }^{1}(G), \omega \in C_{\alpha}(G)$ and $\omega \in C_{\beta}, 0<\beta<\alpha$ at each of the points $\zeta_{G}\left(s_{1}\right)$ and $\zeta_{G}\left(s_{1}\right)$. Along the curves $\bar{\Omega}=0$ we have $\omega \in C_{\alpha}{ }^{1}$.

Remark 1. If for some $k:=\left(k_{1}, \ldots, k_{q}\right)$, the characteristics $n_{k_{1}}=\cdots=$ $n_{k_{q}}=0$ we have the same result as Theorem 6. For this (k_{1}, \ldots, k_{q}) we have neither integral conditions for the functions $w_{k_{1}}, \ldots, w_{k_{q}}$, nor the iteration functions $w_{k_{1}}^{n+1}, \ldots, w_{k_{q}}^{n+1}$.

Remark 2. Since it is always possible to reduce the boundary value problem associated with each component w_{k} to zero providing $\left|\gamma_{k}\right|=1$ ($k=0,1, \ldots, r-1$) it is clear that one may solve the "reduced" equations (4.18) without recourse to checking whether the conditions (4.17) are satisfied.

5. An Example

In this section we apply the preceding results to the investigation of higher order, elliptic boundary value problems. In particular, we consider the Riquier problem

$$
\begin{gather*}
\Delta^{2} \Psi+a \Delta \Psi+b \Psi_{x}+c \Psi_{y}=f, \tag{5.1}\\
\left.\Psi\right|_{\partial G}=\overleftarrow{\phi}_{0}(s) \in C_{\alpha}{ }^{1}(\partial G), \\
\left.\Delta \Psi\right|_{\partial G}=\overleftarrow{\phi}_{1}(s) \in C_{\alpha}{ }^{1}(\partial G) . \tag{5.2}
\end{gather*}
$$

Here the coefficients $a, b, c, f \in C_{\alpha}(\bar{G})$. By setting $\Phi:=\Delta \Psi$, the equation (5.1) is transformed into the system

$$
\begin{align*}
\Delta \Phi+a \Phi+b \Psi_{x}+c \Psi_{y} & =f, \\
\Delta \Psi-\Phi & =0 . \tag{5.3}
\end{align*}
$$

Setting $v_{0}:=\Psi_{x}, u_{0}:=\Psi_{y}, v_{1}:=\Phi_{x}, u_{1}:=\Phi_{y}$, and identifying $\omega:=\Phi$ yields a system of the type (1.5), namely

$$
\begin{align*}
u_{0, x}-v_{0, y} & =0 \\
u_{0, y}+v_{0, x} & =\omega \\
u_{1, x}-v_{1, y} & =0 \tag{5.4}\\
u_{1, y}-v_{1, x} & =f-a \omega-b v_{0}-c u_{0} \\
\omega_{x} & =v_{1}
\end{align*}
$$

Upon differentiating with respect to the arc length parameter, the boundary data may be rewritten as

$$
\Psi_{x} \frac{d x}{d s}+\Psi_{y} \frac{d y}{d s}=\tilde{\phi}_{0}^{\prime}(s)=: \phi_{0}(s) \quad \text { on } \partial G
$$

and

$$
\Phi_{x} \frac{d x}{d s}+\Phi_{y} \frac{d y}{d s}=\tilde{\phi}_{1}^{\prime}(s)=: \phi_{1}(s) \quad \text { on } \partial G
$$

Setting $\alpha:=d y / d s$, and $\beta:=d y / d s$ on ∂G these conditions take on the form

$$
\begin{aligned}
& \alpha u_{0}+\left.\beta v_{0}\right|_{\partial G}=\phi_{0}(s) \in C_{\alpha}(\partial G), \\
& \alpha u_{1}+\left.\beta v_{1}\right|_{\partial G}=\phi_{1}(s) \in C_{\alpha}(\partial G) .
\end{aligned}
$$

The initial condition for the ω-unknown is

$$
\begin{equation*}
\left.\omega\right|_{\partial G}=\psi(s):=\tilde{\phi}_{1}(s) \in C_{\alpha}^{1}(\partial G) \tag{5.6}
\end{equation*}
$$

Putting the system (5.4) into complex form yields a system of the type (2.1),

$$
\begin{aligned}
\frac{\partial w_{0}}{\partial \bar{z}} & =-c_{0} \omega \\
\frac{\partial w_{1}}{\partial \bar{z}} & =-a_{1} w_{0}-b_{1} \bar{w}_{0}-c_{1} \omega-\delta_{1} \\
\omega_{x} & =v_{1}
\end{aligned}
$$

where

$$
a_{0}=b_{0}=\delta_{0}=0, \quad q_{1}=0, \quad c_{0}=\frac{i}{2}
$$

and

$$
a_{1}=\frac{1}{4}(b+i c), \quad b_{1}=-\frac{1}{4}(b-i c), \quad c_{1}=\frac{i}{2} a, \quad \delta_{1}=-\frac{i}{2} f
$$

In the complex notation the boundary conditions for w_{k} become $\operatorname{Re}\left(\bar{\gamma}_{k} w_{k}\right)=0$ $(k=0,1)$, where $\gamma_{k}:=\alpha+i \beta$. Since

$$
\bar{\gamma}_{k}=\alpha-i \beta=\frac{d y}{d s}-i \frac{d x}{d s}=-i e^{i \theta(s)} \quad \text { on } \partial G
$$

it is clear that $\operatorname{ind}\left(\bar{\gamma}_{k}\right)=1$.
The adjoint boundary value problem is then given by the system,

$$
\begin{equation*}
\frac{\partial z}{\partial \bar{z}} k=a_{0} z_{k}-\bar{b}_{0} \bar{z}_{k}=0 \quad(k=0,1) \tag{5.8}
\end{equation*}
$$

with boundary conditions,

$$
\begin{equation*}
\left.\operatorname{Re}\left(\bar{\eta}_{k^{i} k_{k}}\right)\right|_{\partial G}=0, \quad \bar{\eta}_{k}=i \gamma_{k} e^{i \theta(\delta)}, \quad(k=0,1) \tag{5.9}
\end{equation*}
$$

A simple computation shows that $\bar{\eta}_{k}=-1$, and hence, $\operatorname{ind}\left(\bar{\eta}_{k}\right)=$ $-\eta_{k}+1=0(k=0,1)$. By Theorem (4), for each k we have then exactly one nontrivial, continuous solution, namely $z_{k} \equiv \boldsymbol{i} \kappa(k=0,1)$, where κ is a real constant.

We next investigate the integral conditions (4.17). For $k=0$, the condition to be satisfied is

$$
\begin{aligned}
\oint_{\partial G} \Phi_{0}(s) \rho_{0}(s) d s & =-\kappa \oint_{\partial G} \phi_{0}(s) d s=2 \iint_{G} \operatorname{Im}\left\{z_{0}\left(c_{0} \omega+\delta_{0}\right) d x d y\right. \\
& =2 \iint_{G} \operatorname{Im}\left\{i \kappa\left(-\frac{i}{2} \omega\right)\right\}[d x, d y]=0
\end{aligned}
$$

That the left-hand side also vanishes is seen quite easily by recalling the periodicity of $\tilde{\phi}_{0}(s)$, namely

$$
-\kappa \oint_{\partial G} \phi_{0}(s) d s=-\kappa \int_{\partial G} \tilde{\phi}_{0}^{\prime}(s) d s=-\kappa\left[\tilde{\phi}_{0}^{\prime}(\ell)-\tilde{\phi}_{0}(0)\right]=0
$$

We check next the integral conditions for $k=1$. The right-hand side of (4.17) is seen to be

$$
\begin{aligned}
& 2 \iint_{G} \operatorname{Im}\left\{\varkappa_{1}\left(a_{1} w_{0}+b_{1} \bar{w}_{0}+c_{1} \omega+\delta_{1}\right)\right\} d x d y \\
& \quad=2 \iint_{G} \operatorname{Im}\left\{i \kappa\left(\frac{i}{2}\left[b v_{0}+c u_{0}\right]+\frac{i a}{2} \omega-\frac{i}{2} f\right)\right\} d x d y=0 .
\end{aligned}
$$

Whereas the left-hand side is evaluated similarly as before to be

$$
-\kappa \oint_{\partial G} \phi_{1}(s) d s=-\kappa \int_{\partial G} \tilde{\phi}_{1}^{\prime}(s) d s=-\kappa\left(\tilde{\phi}_{1}(\ell)-\tilde{\phi}_{1}(0)\right)=0 .
$$

Hence, since the integral conditions of Theorem (5) are valid there exists a unique, continuous solution of the system (5.4), (5.5), (5.6), and therefore also of the Riquier problem (5.1), (5.2).

References

1. H. Begehr and R. P. Gilbert, Randwertaufgaben ganzzahliger Charakteristik für verallgemeinerte hyperanalytische Funktionen, Appl. Anal. 6 (1977), 189-205.
2. B. B. Bojarski, The theory of generalized analytic vectors, Ann. Polon. Math. 17 (1966), 281-320.
3. A. Douglis, A function-theoretic approach to elliptic systems of equations in two variables, Comm. Pure Appl. Math. 6 (1953), 259-289.
4. R. P. Gilbert and G. N. Hile, Generalized hypercomplex function theory, Trans. Amer. Math. Soc. 195 (1974), 1-29.
5. R. P. Gllbert and W. Wendland, Analytic, generalized, hyperanalytic function theory and an application to elasticity, Proc. Royal Soc. Edinburgh Ser. A 73, No. 22 (1975), 317-331.
6. W. Haack and W. Wendland, "Vorlesungen über Partielle und Pfaffsche Differentialgleichungen," Birkhäuser, Basel/Stuttgart, 1969.
7. E. KüHn, "Über die Funktionentheorie und das Ähnlichkeitsprinzip einer Klasse elliptischer Differentialgleichungssysteme in der Ebene," Dissertation, Dortmund, 1974.
8. Ch. Vidic, "Uber zusammengesetzte Systeme partieller linearer Differentialgleichungen erster Ordnung," Dissertation D 83, Technische Universität Berlin, 1969, 45 S.

[^0]: * This research was supported in part by the Air Force Office of Scientific Research through Grant AF-AFOSR 76-2879, and in part by the Alexander von Humboldt Foundation.

[^1]: ${ }^{1}$ Without loss of generality we can assume that the first $2 r$ equations in (1.1) in the functions $u^{1}, \ldots, u^{2 r}$ are elliptic.

[^2]: ${ }^{2}$ See also, in this regard, Bojarski [2], Kühn [7], Gilbert and Wendland [5], Gilbert and Hile [4], and Begehr and Gilbert [1].

[^3]: ${ }^{8}$ In the case that for some $k:=\left(k_{1} \cdots k_{q}\right)$ the indices $n_{k_{1}}=n_{k_{2}}=\cdot=n_{k_{q}}=0$, see the remark after Theorem 6.

